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The radical carbonylation of 1,5-enynes 1a and 1b using
TTMSS as radical mediator gave the predicted carbonylative
cyclization products 2a and 2b, respectively, in poor yields.
The isolation and characterization of reaction byproducts by
X-ray crystallographic analysis suggest that the poor chain prop-
agation can be attributed to the formation of long-lived 3-silyl-1-
siloxyallyl radicals, produced by the addition of a (TMS)3Si rad-
ical onto the O–C double bond of the initially formed cyclopen-
tanones.

Radical carbonylation reactions have emerged as promising
methods for the introduction of carbon monoxide into organic
molecules.1 We previously reported that the cyclizative silylcar-
bonylation of 1,5-dienes using TTMSS (tris(trimethylsilyl)si-
lane)2 led to 2-(silylmethyl)cyclopentanones in good yields
(Eq 1).3 The reaction starts with the addition of silyl radical to
a diene terminus to form a �-silylalkyl radical, which subse-
quently undergoes carbonylation, followed by 5-exo cyclization.
The resulting radical abstracts hydrogen from TTMSS to give
the desired cyclopentanone and a (TMS)3Si radical, which par-
ticipates in an efficient radical chain propagation. On the basis
of these findings, we concluded that a similar 4þ 1 type radical
annulation strategy might also be applicable to the case of 1,5-
enynes, in which cyclopentanones having a silylmethylene unit
at the �-position would be the likely product (Eq 2). In this let-
ter, we report that, unlike the previous 1,5-diene carbonylation,3

1,5-enyne carbonylation by TTMSS suffers from low chain
propagation, which is caused by the formation of a long-lived
radical, the 3-silyl-1-siloxyallyl radical.
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When Ethyl hept-2-en-6-ynoate (1a) was treated with car-
bon monoxide (85 atm) and tris(trimethylsilyl)silane (1.5 equiv.)
in the presence of AIBN (2,20-azobisisobutyronitrile) as a radical
initiator at 90 �C for 12 h, the anticipated �-silylmethylene cy-
clopentanone 2a was obtained, but in a very low yield (Eq 3).4

In this reaction, a significant amount of 1a remained unreacted,
suggesting poor chain propagation. A careful check of the reac-
tion mixture led to the identification of higher molecular weight
byproduct. X-ray crystallographic analysis indicated that the
structure of the byproduct was 3a, which is comprised of one
molecule of 1,5-enyne 1a, one molecule of carbon monoxide,

two molecules of tris(trimethylsilyl)silyl group, and one mole-
cule of 2-cyanopropyl group (Figure 1).5 When a similar reac-
tion of hept-2-en-6-ynenitrile (1b) was examined, using V-40
[1,10-azobis(cyclohexane-1-carbonitrile)] as a radical initiator,
the desired product 2b was obtained again in low yield along
with an analogous byproduct 3b, which contained a cyano(cy-
clohexyl) unit derived from V-40 (Eq 4). When we carried out
a similar reaction of 1a using BPO (benzoyl peroxide), the yield
of 2a increased by as much as 34% without the formation of the
related byproduct, however, the remaining, unreacted 1a sug-
gested that chain propagation was still a limiting factor in the re-
action.
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What we observed here with TTMSS-mediated reactions
can be rationalized by assuming two reaction pathways, which
are illustrated in Scheme 1. The (TMS)3Si radical adds to an ace-
tylene terminus of 1a to form a vinyl radical, which adds to CO
to give an �,�-unsaturated acyl radical. The subsequent 5-exo
cyclization of the acyl radical followed by the abstraction of hy-
drogen from TTMSS would afford the �-(silylmethylene)cyclo-
pentanone 2a and (TMS)3Si radical. The poor chain propagation
observed in the present system may be accounted for by the for-
mation of a siloxyallyl radical, 4a, which can be produced by the

Figure 1. ORTEP drawing of 3a. Methyl groups on the Si
atoms are omitted for clarity.
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trapping of the initial product 2a by a (TMS)3Si radical.
6 The all-

yl radical 4a, protected by two bulky (TMS)3Si group, is hardly
quenched by the abstraction of hydrogen from TTMSS. As a re-
sult, the radical 4a diminished by coupling with the 2-cyanoiso-
propyl radical, which is produced by the thermolysis of the radi-
cal initiator, AIBN, to give 3a.

The formation of a silyloxyallyl radical 4a is due to the ox-
ophilic nature of the (TMS)3Si radical.

7 For comparison, we ex-
amined the similar carbonylation of the 1,5-enyne 1a using hax-
anethiol.8 The expected cyclopentanone 2c was obtained in 60%
yield without contamination by a related coupling product
(Eq 5).9
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In conclusion, the cyclizative radical carbonylation of 1,5-
enynes using TTMSS as a mediator leads to the production of
2-(silylmethylene)cyclopentanones. However, the efficiency of
the reaction is poor. In this reaction, the �-silyl-substituted
enone products serve as a trap for (TMS)3Si radicals, resulting
in the formation of persistent 3-sily-1-siloxyallyl radicals, which
prevents further chain propagation. In contrast, a similar reaction
using hexanethiol as a mediator proceeds well without suffering
from such a chain breaking. These results have significant impli-
cations for reactions involving (TMS)3Si radicals, since the ox-
ophilic trap of a (TMS)3Si radical may alter the course of the de-
sired propagation reactions.
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Scheme 1. Possible reaction pathway for the silylcarbonylation
of 1a.
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