Radical Carbonylation of 1,5-Enynes Using TTMSS as a Chain Carrier. Unexpected Formation of Persistent 3-Silyl-1-siloxyallyl Radicals Serving as a Chain Breaking Path

Takahide Fukuyama, Yoshitaka Uenoyama, Shinya Oguri, Noboru Otsuka, and Ilhyong Ryu Department of Chemistry, Faculty of Arts and Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531

(Received April 26, 2004; CL-040476)

The radical carbonylation of 1,5-enynes 1a and 1b using TTMSS as radical mediator gave the predicted carbonylative cyclization products 2a and 2b, respectively, in poor yields. The isolation and characterization of reaction byproducts by X-ray crystallographic analysis suggest that the poor chain propagation can be attributed to the formation of long-lived 3-silyl-1 siloxyallyl radicals, produced by the addition of a $(TMS)_{3}Si$ radical onto the O–C double bond of the initially formed cyclopentanones.

Radical carbonylation reactions have emerged as promising methods for the introduction of carbon monoxide into organic molecules.¹ We previously reported that the cyclizative silylcarbonylation of 1,5-dienes using TTMSS (tris(trimethylsilyl)si $lane)^2$ led to 2-(silylmethyl)cyclopentanones in good yields $(Eq 1)³$. The reaction starts with the addition of silyl radical to a diene terminus to form a β -silylalkyl radical, which subsequently undergoes carbonylation, followed by 5-exo cyclization. The resulting radical abstracts hydrogen from TTMSS to give the desired cyclopentanone and a $(TMS)_3Si$ radical, which participates in an efficient radical chain propagation. On the basis of these findings, we concluded that a similar $4 + 1$ type radical annulation strategy might also be applicable to the case of 1,5 enynes, in which cyclopentanones having a silylmethylene unit at the α -position would be the likely product (Eq 2). In this letter, we report that, unlike the previous 1,5-diene carbonylation,³ 1,5-enyne carbonylation by TTMSS suffers from low chain propagation, which is caused by the formation of a long-lived radical, the 3-silyl-1-siloxyallyl radical. **Previous work (Ref. 2):**

When Ethyl hept-2-en-6-ynoate (1a) was treated with carbon monoxide (85 atm) and tris(trimethylsilyl)silane (1.5 equiv.) in the presence of AIBN (2,2'-azobisisobutyronitrile) as a radical initiator at 90 °C for 12 h, the anticipated α -silylmethylene cyclopentanone 2a was obtained, but in a very low yield (Eq 3).4 In this reaction, a significant amount of 1a remained unreacted, suggesting poor chain propagation. A careful check of the reaction mixture led to the identification of higher molecular weight byproduct. X-ray crystallographic analysis indicated that the structure of the byproduct was 3a, which is comprised of one molecule of 1,5-enyne 1a, one molecule of carbon monoxide,

two molecules of tris(trimethylsilyl)silyl group, and one molecule of 2-cyanopropyl group (Figure 1).⁵ When a similar reaction of hept-2-en-6-ynenitrile (1b) was examined, using V-40 [1,1'-azobis(cyclohexane-1-carbonitrile)] as a radical initiator, the desired product 2b was obtained again in low yield along with an analogous byproduct 3b, which contained a cyano(cyclohexyl) unit derived from V-40 (Eq 4). When we carried out a similar reaction of 1a using BPO (benzoyl peroxide), the yield of 2a increased by as much as 34% without the formation of the related byproduct, however, the remaining, unreacted 1a suggested that chain propagation was still a limiting factor in the reaction.

Figure 1. ORTEP drawing of 3a. Methyl groups on the Si atoms are omitted for clarity.

What we observed here with TTMSS-mediated reactions can be rationalized by assuming two reaction pathways, which are illustrated in Scheme 1. The $(TMS)_3S$ i radical adds to an acetylene terminus of 1a to form a vinyl radical, which adds to CO to give an α , β -unsaturated acyl radical. The subsequent 5-exo cyclization of the acyl radical followed by the abstraction of hydrogen from TTMSS would afford the α -(silylmethylene)cyclopentanone 2a and (TMS)₃Si radical. The poor chain propagation observed in the present system may be accounted for by the formation of a siloxyallyl radical, 4a, which can be produced by the trapping of the initial product $2a$ by a $(TMS)_{3}Si$ radical.⁶ The allyl radical $4a$, protected by two bulky $(TMS)_3Si$ group, is hardly quenched by the abstraction of hydrogen from TTMSS. As a result, the radical 4a diminished by coupling with the 2-cyanoisopropyl radical, which is produced by the thermolysis of the radical initiator, AIBN, to give 3a.

Scheme 1. Possible reaction pathway for the silylcarbonylation of 1a.

The formation of a silyloxyallyl radical 4a is due to the oxophilic nature of the $(TMS)_3Si$ radical.⁷ For comparison, we examined the similar carbonylation of the 1,5-enyne 1a using haxanethiol.⁸ The expected cyclopentanone $2c$ was obtained in 60% yield without contamination by a related coupling product $(Eq 5)$.⁹

CO n-C6H13SH O n-C CO2Et ⁶H13S ⁺ V-40 (20 mol%) C6H6, 100 °C, 12 h (5) **1a** +

0.01 M 85 atm 1.3 equiv.

2c 60% (*E*/*Z* = 97/3)

In conclusion, the cyclizative radical carbonylation of 1,5 enynes using TTMSS as a mediator leads to the production of 2-(silylmethylene)cyclopentanones. However, the efficiency of the reaction is poor. In this reaction, the β -silyl-substituted enone products serve as a trap for $(TMS)_3Si$ radicals, resulting in the formation of persistent 3-sily-1-siloxyallyl radicals, which prevents further chain propagation. In contrast, a similar reaction using hexanethiol as a mediator proceeds well without suffering from such a chain breaking. These results have significant implications for reactions involving $(TMS)_3Si$ radicals, since the oxophilic trap of a $(TMS)_3Si$ radical may alter the course of the desired propagation reactions.

This work was supported by Grant-in-Aid for Scientific Research (B) from JSPS. We acknowledge Professor Hiroyuki Matsuzaka for his generous help in obtaining the X-ray data for 3a.

References and Notes

1 Reviews: a) I. Ryu and N. Sonoda, Angew. Chem., Int. Ed. Engl., 35, 1050 (1996). b) I. Ryu, N. Sonoda, and D. P. Curran, Chem. Rev., 96, 177 (1996). c) I. Ryu, Chem. Soc. Rev., 30, 16 (2001). d) I. Ryu, Chem. Rec., 2, 249 (2002). Also see a review on acyl radicals: e) C. Chatgilialoglu, D. Crich, M. Komatsu, and I. Ryu, Chem. Rev., 99, 1991 (1999).

- 2 C. Chatgilialoglu, Acc. Chem. Res., 25, 188 (1992).
- 3 I. Ryu, K. Nagahara, A. Kurihara, M. Komatsu, and N. Sonoda, J. Organomet. Chem., 548, 105 (1997).
- 4 2a: ¹H NMR (500 MHz, CDCl₃) δ 0.18 (s, 27H), 1.23 (t, J = 7:1 Hz, 3H), 1.39–1.53 (m, 1H), 2.27–2.34 (m, 2H), 2.46– 2.49 (m, 1H), 2.62–2.68 (m, 2H), 2.83 (dd, $J = 16.5$, 4.6 Hz, 1H), 4.10–4.14 (m, 2H), 6.98 (s, 1H); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3)$ δ 1.22, 14.19, 26.69, 30.04, 34.76, 45.17, 60.54, 133.03, 151.39, 172.27, 202.52; IR (neat) 1736, 1705, 1620 cm⁻¹; MS (EI) m/z 428 (M⁺, 9), 413 (39), 356 (100), 281 (90), 73 (100). HRMS (EI) m/z calcd for C₁₉H₄₀O₃Si₄ (M⁺) 428.2054, found 428.2054. **2b**: ¹H NMR (500 MHz, CDCl₃) δ 0.20 (s, 27H), 1.57–1.62 (m, 1H), 2.39–2.58 (m, 4H), 2.71 (dd, $J = 16.3$, 7.6 Hz, 1H), 2.84 (dd, $J = 17.0$, 4.6 Hz, 1H), 7.10 (s, 1H); ¹³C NMR $(125 \text{ MHz}, \text{ CDCl}_3)$ δ 1.23, 17.77, 26.21, 29.62, 44.71, 118.07, 136.15, 150.03, 199.65; IR (neat) 2253, 1705, 1620 cm^{-1} ; MS (EI) m/z 381 (M⁺, 12), 366 (24), 308 (100), 73 (77); HRMS (EI) m/z calcd for C₁₇H₃₅NOSi₄ $(M⁺)$ 381.1796, found 381.1789. 3a: mp 161-162 °C. ¹H NMR (500 MHz, CDCl₃) δ 0.19 (s, 27H), 0.21 (s, 27H), 1.23–1.27 (m, 6H), 1.39 (s, 3H), 1.51 (s, 1H), 2.23–2.26 (m, 1H), 2.40–2.46 (m, 2H), 2.60–2.66 (m, 2H), 3.08 (d, $J = 12.4$ Hz, 1H), 4.08–4.19 (m, 2H), 5.46 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 1.45, 2.10, 14.27, 24.07, 25.24, 26.90, 31.94, 35.71, 46.06, 60.50, 86.61, 119.80, 125.14, 160.50, 171.94; IR (neat) 1738 cm^{-1} ; MS (EI) m/z 670 $(M⁺ - SilMe₃, 100), 242 (44), 73 (86); HRMS (EI) $m/z$$ calcd for $C_{29}H_{64}NO_3Si_7$ (M⁺ - Me₃Si) 670.3271, found 670.3274.
- 5 Preliminary X-ray data for $3a$: C₃₂H₇₃NO₃Si₈, fw 744.62, monoclinic, space group $C2/c$ (#15), $a = 41.267(2)$, $b = 9.6886(4),$ $c = 27.994(4)$ Å, $\beta = 119.981,$ $V =$ 9694.8(7) \AA^3 , $T = 296$ K, $Z = 8$, $D_{\text{caled}} = 1.020$ g/cm³, $F(000)$ 3264, $R = 0.134$, $R_W = 0.157$ $(I > 5\sigma(I))$ for 10799 observed reflections.
- 6 The cyclizative silylcarbonylation of 1,5-azaenynes using TTMSS proceeds with smooth chain propagation, see: M. Tojino, N. Otsuka, T. Fukuyama, H. Matsubara, C. H. Schiesser, H. Kuriyama, H. Miyazato, S. Minakata, M. Komatsu, and I. Ryu, Org. Biomol. Chem., 1, 4262 (2003).
- 7 a) A. Alberti and C. Chatgilialoglu, Tetrahedron, 46, 3963 (1990). b) M. Ballestri, C. Chatgilialoglu, K. B. Clark, D. Griller, B. Giese, and B. Kopping, J. Org. Chem., 56, 678 (1991).
- 8 S. Nakatani, J. Yoshida, and S. Isoe, J. Chem. Soc., Chem. Commun., 1992, 880.
- 9 2c: ¹H NMR (500 Mz, CDCl₃) δ 0.88 (t, $J = 6.78$ Hz, 3H), 1.25 (t, $J = 7.33$ Hz, 3H), 1.26–1.41 (m, 7H), 1.67 (quint, $J = 7.79$ Hz, 2H), 2.36–2.46 (m, 3H), 2.50–2.58 (m, 1H), 2.64–2.72 (m, 1H), 2.80–2.88 (m, 3H), 4.14 (q, $J =$ 6.78 Hz, 2H), 7.43 (s, 1H); ¹³C NMR 125 Mz, CDCl₃) δ 14.04, 14.26, 22.54, 26.27, 26.61, 28.16, 30.64, 31.32, 34.79, 34.94, 45.53, 60.62, 131.96, 138.54, 172.38, 202.13; IR (neat) 1730, 1705 cm⁻¹; MS (EI) m/z 298 (M⁺, 69), 253 (58), 182 (69), 167 (68), 136 (100); HRMS (EI) m/z calcd for $C_{16}H_{26}OS (M⁺)$ 298.1602, found 298.1603.